252 | 0 | 77 |
下载次数 | 被引频次 | 阅读次数 |
北部湾地区拥有丰富的海洋资源,海洋工程在这一地区的发展日益重要,了解海砂在不同固结应力比和密实度条件下的动力特性,对于海岸线保护、港口建设、堤防工程等都至关重要。为探究北部湾海砂的动力特性,针对北部湾海砂开展了一系列的固结不排水循环动三轴试验,分析了相对密实度和固结应力比对北部湾海砂的轴向累积应变、动弹性模量、动孔压以及滞回曲线的影响。研究表明:在相同振次水平下,随着固结应力比和相对密实度的增大,海砂的轴向累积应变随之减小;动孔压随着固结应力比的增大线性减小,在低相对密实度(Dr≤50%)下,动孔压随振次的增大而增大,在高相对密实度(Dr=70%)下,动孔压随振次先增后减;动弹性模量随着振次的增加出现刚度软化现象,增大相对密实度与固结应力比,较明显地减缓了动弹性模量的衰减速率;随着固结应力比和相对密实度的增大,滞回曲线包围的面积减小,滞回曲线由不封闭曲线转为封闭曲线。这些研究成果可以为北部湾围填海工程提供一定的参考。
Abstract:There are abundant marine resources in Beibu Gulf area, and the development of marine engineering in this area is becoming increasingly important.To understand the dynamic characteristics of sea sand under different consolidation stress ratio and density conditions is very important for coastline protection, port construction and dike engineering.In order to explore the dynamic characteristics of Beibu Gulf sea sand, a series of consolidation undrained cyclic dynamic triaxial tests were carried out on Beibu Gulf sea sand, and the effects of relative compacting degree and consolidation stress ratio on the axial cumulative strain, dynamic elastic modulus, dynamic pore pressure and hysteresis curve of Beibu Gulf sea sand were analyzed.The results show that the axial cumulative strain of sea sand decreases with the increase of consolidation stress ratio and relative density at the same vibration level.The dynamic pore pressure decreases linearly with the increase of consolidation stress ratio.At low relative density(Dr≤50%),the dynamic pore pressure increases with the increase of vibration times.At high relative density(Dr =70%),the dynamic pore pressure increases first and then decreases with the increase of vibration times.The dynamic elastic modulus appears stiffness softening phenomenon with the increase of vibration times, and the relative density and consolidation stress ratio are increased, which obviously slows down the attenuation rate of dynamic elastic modulus.With the increase of consolidation stress ratio and relative density, the area enclosed by the hysteresis curve decreases, and the hysteresis curve changes from an unclosed curve to a closed curve.These research results can provide some reference for the reclamation project in Beibu Gulf.
[1] 胡斯亮.围填海造地及其管理制度研究[D].青岛:中国海洋大学,2011.HU S L.A Study on Land Reclamation and Its Management Systems[D].Qingdao:Ocean University of China,2011.
[2] 王勇,王艳丽.细粒含量对饱和砂土动弹性模量与阻尼比的影响研究[J].岩土力学,2011,32(9):2623-2628.WANG Y,WANG Y L.Study of effects of fines content on dynamic elastic modulus and damping ratio of saturated sand[J].Rock and Soil Mechanics,2011,32(9):2623-2628.
[3] 马少坤,王博,刘莹,等.南宁地铁区域饱和圆砾土大型动三轴试验研究[J].岩土工程学报,2019,41(1):168-174.MA S K,WANG B,LIU Y,et al.Large-scale dynamic triaxial tests on saturated gravel soil in Nanning metro area[J].Chinese Journal of Geotechnical Engineering,2019,41(1):168-174.
[4] 赵云辉,孟凡超,郑志华.相对密实度对结构性砂土动剪切模量和阻尼比影响的试验研究[J].工程抗震与加固改造,2022,44(1):152-159.ZHAO Y H,MENG F C,ZHENG Z H.Effect of relative compactness on dynamic shear modulus and damping ratio of structural sandy soils[J].Earthquake Resistant Engineering and Retrofitting,2022,44(1):152-159.
[5] 胡小荣,董肖龙,汪日堂.饱和砂土的三剪弹塑性边界面模型研究(二)——模型验证及应用[J].应用力学学报,2020,37(3):1283-1292,1406-1407.HU X R,DONG X L,WANG R T.Approaches to the triple-shear elasto-plasticity bounding surface model for saturated sands(2)—Verification and applications[J].Chinese Journal of Applied Mechanics,2020,37(3):1283-1292,1406-1407.
[6] 褚峰,邵生俊,陈存礼.饱和淤泥质砂土动力变形及动强度特性试验研究[J].岩石力学与工程学报,2014,33(增刊1):3299-3305.CHU F,SHAO S J,CHEN C L.Experimental study on dynamic deformation and dynamic strength characteristics of saturated muddy sand[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):3299-3305.
[7] HA GIANG P H,VAN IMPE P O,VAN IMPE W F,et al.Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation[J].Soil Dynamics and Earthquake Engineering,2017,100:371-379.
[8] MORSY A M,SALEM M A,ELMAMLOUK H H.Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges[J].Soil Dynamics and Earthquake Engineering,2019,116:692-708.
[9] VAN IMPE P O,VAN IMPE W F,MANZOTTI A,et al.Compaction control and related stress-strain behaviour of off-shore land reclamations with calcareous sands[J].Soils and Foundations,2015,55(6):1474-1486.
[10]王晋宝,刘校麟,童焯煜,等.基于共振柱的海砂动剪切模量和阻尼比探究[J].广西大学学报(自然科学版),2019,44(4):1044-1051.WANG J B,LIU X L,TONG Z Y,et al.Investigation of dynamic shear modulus and damping ratio of sea sand based on the resonant column test[J].Journal of Guangxi University (Natural Science Edition),2019,44(4):1044-1051.
[11]SALEM M,ELMAMLOUK H,AGAIBY S.Static and cyclic behavior of North Coast calcareous sand in Egypt[J].Soil Dynamics and Earthquake Engineering,2013,55:83-91.
[12]JAFARIAN Y,JAVDANIAN H,HADDAD A.Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions[J].Soils and Foundations,2018,58(1):172-184.
[13]王家全,陈胜前,唐毅,等.北部湾地区海砂填料的动力特性分析[J].海洋工程,2020,38(5):149-155.WANG J Q,CHEN S Q,TANG Y,et al.Dynamic characteristics analysis of sea sand filler in Beibu Gulf Area[J].The Ocean Engineering,2020,38(5):149-155.
[14]王强.循环荷载作用下广州软土长期累积变形特性试验研究[J].安全与环境工程,2022,29(4):205-210,219.WANG Q.Experimental study on long-term cumulative deformation of Guangzhou soft clay under cyclic loads[J].Safety and Environmental Engineering,2022,29(4):205-210,219.
[15]纪文栋,张宇亭,王洋,等.循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J].岩土力学,2018,39(增刊1):282-288.JI W D,ZHANG Y T,WANG Y,et al.Comparative study on shear characteristics of coral calcareous sand and ordinary siliceous sand under cyclic single shear[J].Rock and Soil Mechanics,2018,39(S1):282-288.
[16]王晓丽,裴会敏,王栋.未胶结钙质砂静力和循环强度的单剪试验研究[J].海洋工程,2018,36(6):124-129.WANG X L,PEI H M,WANG D.Static and dynamic strengths of uncemented calcareous sand from simple shear tests[J].The Ocean Engineering,2018,36(6):124-129.
[17]王刚,查京京,魏星.循环三轴应力路径下钙质砂颗粒破碎演化规律[J].岩土工程学报,2019,41(4):755-760.WANG G,ZHA J J,WEI X.Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J].Chinese Journal of Geotechnical Engineering,2019,41(4):755-760.
[18]LYU Y,WANG Y,ZUO D.Effects of particle size on dynamic constitutive relation and energy absorption of calcareous sand[J].Powder Technology,2019,356:21-30.
[19]COOP M R,SORENSEN K K,FREITAS T B,et al.Particle breakage during shearing of a carbonate sand[J].Géotechnique,2004,54(3):157-163.
[20]戴国亮,欧阳浩然,秦伟,等.反复一维冲击下钙质砂动力特性SHPB试验研究[J].振动与冲击,2022,41(14):264-270,279.DAI G L,OUYANG H R,QIN W,et al.SHPB tests on the dynamic characteristics of calcareous sand under repeated one-dimensional impact loading[J].Journal of Vibration and Shock,2022,41(14):264-270,279.
[21]杨斌,林军.饱和钙质砂孔压发展特性试验研究[J].人民长江,2022,53(6):174-179.YANG B,LIN J.Study on pore pressure development characteristics of saturated calcareous sand[J].Yangtze River,2022,53(6):174-179.
[22]刘鑫,李飒,刘小龙,等.南海钙质砂的动剪切模量与阻尼比试验研究[J].岩土工程学报,2019,41(9):1773-1780.LIU X,LI S,LIU X L,et al.Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J].Chinese Journal of Geotechnical Engineering,2019,41(9):1773-1780.
[23]马维嘉,陈国兴,李磊,等.循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J].岩土工程学报,2019,41(5):981-988.MA W J,CHEN G X,LI L,et al.Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J].Chinese Journal of Geotechnical Engineering,2019,41(5):981-988.
[24]虞海珍,汪稔.钙质砂动强度试验研究[J].岩土力学,1999,20(4):6-11.YU H Z,WANG R.The cyclic strength test research on calcareous sand[J].Rock and Soil Mechanics,1999,20(4):6-11.
[25]黄博,丁浩,陈云敏.高速列车荷载作用的动三轴试验模拟[J].岩土工程学报,2011,33(2):195-202.HUANG B,DING H,CHEN Y M.Simulation of high-speed train load by dynamic triaxial tests[J].Chinese Journal of Geotechnical Engineering,2011,33(2):195-202.
[26]National Research Council NRC.Liquefaction of Soils during Earthquakes[M].Washington,D.C.:National Academies Press,1985.
[27]商拥辉,徐林荣,黄亚黎,等.重载铁路水泥改良膨胀土路基填料动弹模量及阻尼比研究[J].工程地质学报,2020,28(1):103-110.SHANG Y H,XU L R,HUANG Y L,et al.Laboratory tests on dynamic modulus and damping ratio of cement-stabilized expansive soil as subgrade filling of heavy haul railway[J].Journal of Engineering Geology,2020,28(1):103-110.
[28]李建国.波浪荷载作用下饱和钙质砂动力特性的试验研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2005.LI J G.Experimental Research on Dynamic Behavior of Saturated Calcareous Sand under Wave Loading[D].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2005.
[29]王军,蔡袁强,徐长节,等.循环荷载作用下饱和软黏土应变软化模型研究[J].岩石力学与工程学报,2007,26(8):1713-1719.WANG J,CAI Y Q,XU C J,et al.Study on strain softening model of saturated soft clay under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1713-1719.
[30]ISHIHARA K.Stability of natural deposits during earthquakes[C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering.San Francisco,USA:AA Balkema Publishers,1985:321-376.
[31]DIEF H M,FIGUEROA J L.Evaluation of soil liquefaction by energy principles using centrifuge modeling[C]//ISRM International Symposium.Melbourne,Australia:ISRM,2000.
基本信息:
DOI:10.13578/j.cnki.issn.1671-1556.20221285
中图分类号:TU41
引用信息:
[1]王家全,和玉,祝梦柯等.相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究[J].安全与环境工程,2024,31(04):20-28.DOI:10.13578/j.cnki.issn.1671-1556.20221285.
基金信息:
国家自然科学基金项目(41962017); 广西自然科学基金重点项目(2022GXNSFDA035081); 广西高等学校高水平创新团队及卓越学者计划项目(桂教人才[2020]6号); 广西科技大学研究生教育创新计划项目(GKYC202328); 广西大学生创新创业训练计划资助项目(202210594057)