nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.32 70-77
基于天空辐射制冷的户内变电站降温研究
基金项目(Foundation): 国网河南省电力公司科技项目(5217L024000T)
邮箱(Email): yjwu2019@whut.edu.cn;
DOI: 10.13578/j.cnki.issn.1671-1556.20250025
摘要:

户内变电站作为电网的重要组成部分,能耗高、散热差的问题受到了广泛关注。针对该问题提出了一种基于天空辐射制冷的储冷送风降温系统,对户内变电站进行冷却降温;搭建了该系统实验测试平台,对其储冷及降温性能进行测试;根据实测数据对建立的系统传热模型进行了验证。结果表明:该降温系统在夏季和秋季夜间均有良好的蓄冷性能,蓄冷水箱温度降幅分别达6.5℃和9.0℃,秋季日间用冷户内变电站模块室内平均温度稳定在18.0℃,而不采用该降温系统的室内温度为40.0℃,系统平均性能系数(coefficient of performance,COP)为8.38,系统降温节能效果显著;天空辐射制冷模块出口水温和总制冷量的实测值与模拟值的相对误差均小于5%,建立的系统传热模型可靠性好。该研究为户内变电站低能耗降温提供了一种节能方案,并为该方案的设计运行提供了理论基础。

Abstract:

As an important part of the power grid, indoor substations have attracted widespread attention for their high energy consumption and poor heat dissipation. To address this problem, a cold storage and air supply cooling system based on sky radiative cooling was proposed to cool indoor substations. An experimental test platform for the system was built to test its cold storage and cooling characteristics. The heat transfer model of the system was verified based on measured data. The experimental results show that the cooling system has good cooling storage performance at night in summer and autumn. The temperature of the cold storage water tank drops by 6. 5 ℃ and 9. 0 ℃ respectively. The average indoor temperature of the indoor substation module during the daytime in autumn is stable at 18. 0 ℃, while the indoor temperature without the cooling system is 40. 0 ℃. The average coefficient of performance(COP) of the system is 8. 38, and the cooling and energysaving effect of the system is significant. The relative errors of the measured and simulated values of the outlet water temperature and total cooling capacity of the sky radiative cooling module are less than 5%, and the established system heat transfer model has good reliability. This study provides an energy-saving solution for low-energy cooling of indoor substations and provides theoretical basis for the design and operation of the solution.

参考文献

[1]张明,章健,沈黎明,等.城市电力网规划[M].郑州:郑州大学出版社,2009.ZHANG M, ZHANG J, SHEN L M, et al. Urban Power Network Planning[M]. Zhengzhou:Zhengzhou University Press, 2009.

[2]邓珺,杨向宇,龙巍.变压器的降噪技术[J].变压器,2009,46(3):34-36, 39.DENG J, YANG X Y, LONG W. Technology to reduce transformer noise[J]. Transformer, 2009, 46(3):34-36, 39.

[3]陈明兰,程志.户内变电站主变压器室风机温度控制箱的应用研究[J].电子世界,2021(1):172-173.CHEN M L, CHENG Z. Research on application of fan temperature control box in main transformer room of indoor substation[J]. Electronics World, 2021(1):172-173.

[4] GRANQVIST C G, HJORTSBERG A. Radiative cooling to low temperatures:General considerations and application to selectively emitting SiO films[J]. Journal of Applied Physics,1981, 52(6):4205-4220.

[5] YAN T, XU D, MENG J, et al. A review of radiative sky cooling technology and its application in building systems[J].Renewable Energy, 2024, 220:119599.

[6] HU M, ZHAO B, AO X, et al. Feasibility research on a double-covered hybrid photo-thermal and radiative sky cooling module[J]. Solar Energy, 2020, 197:332-343.

[7] ZHAO D, AILI A, ZHAI Y, et al. Radiative sky cooling:Fundamental principles, materials, and applications[J].Applied Physics Reviews, 2019, 6(2):021306.

[8] GENTLE A R, SMITH G B. A subambient open roof surface under the mid-summer sun[J]. Advanced Science, 2015, 2(9):1500119.

[9] CUI Z, GUO C, ZHAO D. Energy-saving and economic analysis of passive radiative sky cooling for telecommunication base station in China[J]. Building Simulation, 2022, 15(10):1775-1787.

[10]马志豪,易知通,吴宇,等.基于辐射制冷膜的变电箱柜节能降温特性实验研究[J].制冷技术,2024, 44(5):60-66.MA Z H, YI Z T, WU Y, et al. Experimental study on energysaving and cooling characteristics of substation cabinets based on radiative cooling film[J]. Chinese Journal of Refrigeration Technology, 2024, 44(5):60-66.

[11]KIMBALL B A, IDSO S B, AASE J K. A model of thermal radiation from partly cloudy and overcast skies[J]. Water Resources Research, 1982, 18(4):931-936.

[12]LIU Z, TAN H, MA G. Experimental investigation on night sky radiant cooling performance of duct-type heat exchanger[J].International Journal of Ventilation, 2017, 16(3):255-267.

[13]文凯,王程远,王晓坡,等.耦合天空辐射制冷的数据中心自然冷却方案分析[J].工程热物理学报,2024, 45(5):1248-1254.WEN K, WANG C Y, WANG X P, et al. Analysis of free cooling scheme coupled with radiative sky cooling in data center[J]. Journal of Engineering Thermophysics, 2024, 45(5):1248-1254.

[14]SAITOH T S, FUJINO T. Advanced energy-efficient house(HARBEMAN house)with solar thermal, photovoltaic, and sky radiation energies(experimental results)[J]. Solar Energy,2001, 70(1):63-77.

[15]YAN T, LUO Y, XU T, et al. Experimental study of the coupled wall system of pipe-encapsulated PCM wall and nocturnal sky radiator for self-activated heat removal[J].Energy and Buildings, 2021, 241:110964.

[16]ZHANG S, NIU J. Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material(MPCM)slurry storage[J]. Energy and Buildings, 2012, 54:122-130.

[17]罗庆.传热学[M]. 2版.重庆:重庆大学出版社,2019.LUO Q. Heat Transmission Science[M]. 2nd ed. Chongqing:Chongqing University Press, 2019.

[18]李涛,刘青霞,尤靖楠,等.室外综合温度的时空变化特征及影响因子分析[J].西安建筑科技大学学报(自然科学版),2023, 55(6):905-911.LI T, LIU Q X, YOU J N, et al. Analysis of variation characteristics and influencing factors of outdoor comprehensive temperature[J]. Journal of Xi’an University of Architecture&Technology(Natural Science Edition), 2023, 55(6):905-911.

基本信息:

DOI:10.13578/j.cnki.issn.1671-1556.20250025

中图分类号:TM63

引用信息:

[1]陈晨,姚晗,韩慧娜等.基于天空辐射制冷的户内变电站降温研究[J].安全与环境工程,2025,32(04):70-77.DOI:10.13578/j.cnki.issn.1671-1556.20250025.

基金信息:

国网河南省电力公司科技项目(5217L024000T)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文