nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 06 v.31 1-8
基于迁移学习和深度学习的驾驶员分心行为识别研究
基金项目(Foundation): 湖北省自然科学基金项目(2021CFB017); 安全预警与应急联动技术湖北省协同创新中心开放课题重点项目(AY2023-1-3)
邮箱(Email): yl-zhyj@whut.edu.cn;
DOI: 10.13578/j.cnki.issn.1671-1556.20230704
中文作者单位:

武汉理工大学中国应急管理研究中心;武汉理工大学安全科学与应急管理学院;

摘要(Abstract):

为了解决传统驾驶员分心行为识别模型准确率过度依赖大样本数据集、耗时较长等问题,提出了一种结合迁移学习策略和卷积神经网络模型的方法来对驾驶员分心行为进行识别。首先在模型中引入ImageNet数据集上训练好的网络权重,冻结网络的卷积层;然后去掉原网络中的全连接层,重新添加输出维度为10的FC层;最后在验证集上对比基于迁移学习策略模型与原网络模型的识别精度。结果表明,基于迁移学习策略的分心行为识别模型比原网络模型的平均准确率提升了约4%,显著提高了分心行为的识别率。本研究结果可为驾驶员分心行为识别提供理论与技术支持。

关键词(KeyWords): 迁移学习;深度学习;分心行为识别;驾驶安全
参考文献

[1] PARKER D, REASON J T, MANSTEAD A S R, et al.Driving errors, driving violations and accident involvement[J].Ergonomics, 1995, 38(5):1036-1048.

[2]马迎杰.基于深度学习的驾驶行为识别算法研究[D].泉州:华侨大学,2020.MA Y J. Research on Driving Behavior Recognition Algorithm Based on Deep Learning[D]. Quanzhou:Huaqiao University,2020.

[3]李翔,张涛,张哲,等. Transformer在计算机视觉领域的研究综述[J].计算机工程与应用,2023, 59(1):1-14.LI X, ZHANG T, ZHANG Z, et al. Survey of Transformer research in computer vision[J]. Computer Engineering and Applications, 2023, 59(1):1-14.

[4] BOGUCKI R, CYGAN M, KHAN C B, et al. Applying deep learning to right whale photo identification[J]. Conservation Biology, 2019, 33(3):676-684.

[5]江春雨,程琳,黎晓明亮.生成对抗网络在计算机视觉领域的应用[J].计算机科学与应用,2018, 8(11):1726-1733.JIANG C Y,CHENG L, LI X M L. The applications of generative adversarial networks in the field of computer vision[J]. Computer Science and Application, 2018, 8(11):1726-1733.

[6]代少升,黄向康,黄涛,等.一种基于深度学习的驾驶员打电话行为检测方法[J].电讯技术,2021, 61(7):785-792.DAI S S, HUANG X K, HUANG T, et al. A driver’s calling behavior detection method based on deep learning[J].Telecommunication Engineering, 2021, 61(7):785-792.

[7]王彬,李小曼,赵作鹏.基于改进Faster RCNN的驾驶员手持通话检测[J].江苏大学学报(自然科学版),2023, 44(3):318-323.WANG B, LI X M, ZHAO Z P. Hand-held call detection of driver based on improved Faster RCNN[J]. Journal of Jiangsu University(Natural Science Edition), 2023, 44(3):318-323.

[8] ZHAO Z, ZHAO H, YE C, et al. FPN-D-based driver smoking behavior detection method[J]. IETE Journal of Research, 2023, 69(8):5497-5506.

[9]李敏,王武宏,蒋晓蓓,等.城市典型路段的驾驶员酒驾行为识别[J].北京理工大学学报,2016,36(增刊2):185-188.LI M,WANG W H,JIANG X B, et al. Recognition of drunk driving behavior in typical urban road sections[J]. Journal of Beijing Institute of Technology,2016,36(S2):185-188.

[10]白中浩,王韫宇,张林伟.基于图卷积网络的多信息融合驾驶员分心行为检测[J].汽车工程,2020, 42(8):1027-1033.BAI Z H, WANG Y Y, ZHANG L W. Driver distraction behavior detection with multi-information fusion based on graph convolution networks[J]. Automotive Engineering, 2020, 42(8):1027-1033.

[11]MOSLEMI N, AZMI R, SORYANI M. Driver distraction recognition using 3D convolutional neural networks[C]//20194th International Conference on Pattern Recognition and Image Analysis(IPRIA). Piscataway, NJ:IEEE. 2019:145-151.

[12]陈军,张黎,周博,等.基于级联卷积神经网络的驾驶员分心驾驶行为检测[J].科学技术与工程,2020, 20(14):5702-5708.CHEN J, ZHANG L, ZHOU B, et al. Driver distracted driving behavior detection based on cascaded convolutional neural network[J]. Science Technology and Engineering,2020, 20(14):5702-5708.

[13]戎辉,华一丁,张小俊,等.基于迁移学习和AlexNet的驾驶员行为状态识别方法[J].科学技术与工程,2019, 19(28):208-216.RONG H, HUA Y D, ZHANG X J, et al. Driver behavior recognition method based on migration learning and AlexNet[J]. Science Technology and Engineering, 2019, 19(28):208-216.

[14]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas:IEEE,2016:770-778.

[15]SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2:Inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:4510-4520.

[16]HOWARD A G, ZHU M, CHEN B, et al. MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].(2017-04-17)[2023-06-25]. https://arxiv. org/abs/1704. 04861.

[17]MONTOYA A, HOLMAN D, SF_DATA_SCIENCE, et al.State Farm Distracted Driver Detection[EB/OL].(2020-11-02)[2021-12-17]. https://www. kaggle. com/c/state-farmdistracted-driver-detection.

[18]周晓华,武文博.基于改进DenseNet的驾驶行为识别[J].计算机仿真,2023,40(2):197-202.ZHOU X H, WU W B. Driving behavior recognition based on improved DenseNet[J]. Computer Simulation,2023,40(2):197-202.

基本信息:

DOI:10.13578/j.cnki.issn.1671-1556.20230704

中图分类号:TP18;U463.6

引用信息:

[1]宋英华,郭雅倩,张远进.基于迁移学习和深度学习的驾驶员分心行为识别研究[J].安全与环境工程,2024,31(06):1-8.DOI:10.13578/j.cnki.issn.1671-1556.20230704.

基金信息:

湖北省自然科学基金项目(2021CFB017); 安全预警与应急联动技术湖北省协同创新中心开放课题重点项目(AY2023-1-3)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文