37 | 0 | 1 |
下载次数 | 被引频次 | 阅读次数 |
隧道运营产生的振动对储气库上覆盖层有着不容忽视的安全影响。为研究交通荷载应力波传播对储气库上覆盖层完整性的影响,以黄草峡储气库为依托,采用有限元数值模拟方法,对渝利铁路客货运列车、沪渝蓉高铁列车和黄草山高速公路载重汽车等不同交通荷载引起的盖层变形量和振动速率进行了分析。结果表明:(1)隧道运营过程中,储气库上覆盖层的变形量和振动速率均未超过安全限值;(2)储气库上覆盖层的变形量随距隧道距离的增大而减小,其中雷口坡组和嘉四4 2套膏岩层受影响较大,而嘉二3膏岩层受影响最小,说明岩性和地层结构对地层响应具有显著的调控作用;(3)上覆盖层在多种交通工况的叠加影响下,其影响主要局限于隧道下部嘉四4膏岩层范围内,未对储气库盖层的完整性造成威胁。研究成果可为复杂交通荷载下储气库上覆盖层完整性评估提供理论支撑和实践指导。
Abstract:Tunnel-induced vibrations can exert a non-negligible impact on the safety of overlying strata in underground gas storage(UGS) reservoir. To investigate the effects of stress wave propagation from traffic loads on the integrity of caprock above UGS, a finite element numerical simulation was conducted based on the Huangcaoxia gas storage reservoir. The deformation and particle velocity responses of the overburden were analyzed under different traffic loads: passenger and freight trains on the Chongqing-Lichuan Railway, highspeed trains on the Shanghai-Chongqing-Chengdu Railway, and heavy trucks on the Huangcaoshan Expressway. The results are as follows :(1) During tunnel operation, both deformation and vibration velocity of the overburden remain within safe limits;(2) Deformation decrease with increasing distance from the tunnel, with T2l and T1 j44 being more significantly affected, while T1 j23 shows minimal deformation, indicating a significant regulatory effect of lithology and stratigraphic structure on the geomechanical response;(3) Under the combined influence of multiple traffic scenarios, the impact is mainly confined to T1 j44 beneath the tunnel and poses no threat to the integrity of the caprock. These findings provide theoretical support and practical guidance for evaluating the integrity of overburden strata under complex traffic-induced dynamic loads in UGS systems.
[1]李建君.中国地下储气库发展现状及展望[J].油气储运,2022, 41(7):780-786.LI J J. Development status and prospect of underground gas storage in China[J]. Oil&Gas Storage and Transportation,2022, 41(7):780-786.
[2]翟婉明,赵春发.现代轨道交通工程科技前沿与挑战[J].西南交通大学学报,2016, 51(2):209-226.ZHAI W M,ZHAO C F. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University,2016, 51(2):209-226.
[3]王凯,富志强,杨春波,等.黄土地层公路隧道运营期下穿古长城动力响应研究[J].公路,2024, 69(4):416-421.WANG K, FU Z Q, YANG C B, et al. Study on dynamic response of highway tunnels in loess strata undercrossing ancient Great Wall during operation period[J]. Highway, 2024, 69(4):416-421.
[4] LAI J, WANG K, QIU J, et al. Vibration response characteristics of the cross tunnel structure[J]. Shock and Vibration. 2016, 2016(5):1-16.
[5] HUANG J, YUAN T Y, PENG L M, et al. Model test on dynamic characteristics of invert and foundation soils of highspeed railway tunnel[J]. Earthquake Engineering and Engineering Vibration. 2015, 14(3):549-559.
[6]马利衡.沪宁城际高速铁路振动及其对周围环境影响研究[D].北京:北京交通大学,2015.MA L H. Research on Vibration of Shanghai-Nanjing Intercity High-Speed Railway and Its Environment Impact[D]. Beijing:Beijing Jiaotong University, 2015.
[7] VROUWENVELDER T. Stochastic modelling of extreme action events in structural engineering[J]. Probabilistic Engineering Mechanics,2000,15(1):109-117.
[8]陈昭.地铁列车振动荷载下车-隧系统动力特性研究[D].北京:北京建筑大学,2020.CHEN Z. Study on Dynamic Characteristics of Metro Train under Vibration Load[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2020.
[9]张柯.地铁行车荷载作用下黄土地层的振动响应和沉降[D].西安:西安建筑科技大学,2011.ZHANG K. Vibration and Settlement of Loess Due to Subway Move Loads[D]. Xi’an:Xi’an University of Architecture and Technology, 2011.
[10]MA L, LIN F, LIU R, et al. Disturbance and control of national strategic gas storage induced by adjacent tunnel blasting[J]. Frontiers in Earth Science,2022,9:807073.
[11]马龙祥,刘维宁,蒋雅君,等.基于薄片有限元-无限元耦合模型的地铁列车振动环境影响分析[J].振动与冲击,2017, 36(15):111-117.MA L X, LIU W N, JIANG Y J, et al. Metro train-induced vibration influences on surrounding environments based on sliced finite element-infinite element coupled model[J]. Journal of Vibration and Shock, 2017, 36(15):111-117.
[12]张冬梅,李钰.地铁荷载引起的盾构隧道及土层长期沉降研究[J].防灾减灾工程学报,2015, 35(5):563-567.ZHANG D M, LI Y. Long-term settlement of shield tunnel in soft clay due to vehicle vibration[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5):563-567.
[13]ZHOU Y, WU L ,LI J, et al. The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns[J]. Geosystem Engineering, 2018, 21(6):326-334.
[14]DEGRANDE G, CLOUTEAU D, OTHMAN R, et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J]. Journal of Sound and Vibration,2006, 293(3/4/5):645-666.
[15]GUPTA S, LIU W F, DEGRANDE G, et al. Prediction of vibrations induced by underground railway traffic in Beijing[J].Journal of Sound and Vibration, 2008, 310(3):608-630.
[16]GUPTA S, DEGRANDE G. Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach[J]. Journal of Sound and Vibration, 2010, 329(8):1101-1125.
[17]闫维明,张祎,任珉,等.地铁运营诱发振动实测及传播规律[J].北京工业大学学报,2006, 32(2):149-154.YAN W M, ZHANG Y, REN M,et al. In situ experiment and analysis of environmental vibration induced by urban subway transit[J]. Journal of Beijing University of Technology, 2006,32(2):149-154.
[18]郑金贤.城市轨道交通振动在土层中的传播规律的研究[D].北京:北京建筑大学,2017.ZHENG J X. Study on the Propagation Law of Vibration Generated by Subway[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2017.
[19]罗鑫,郝靖,叶茂,等.川东黄草峡构造嘉二-嘉一段改建储气库的储层类型及控制因素[J].成都理工大学学报(自然科学版),2023, 50(5):551-559,576.LUO X, HAO J, YE M, et al. Reservoir types and controlling factors of the T3 j2 and T3 j1 reconstructed underground gas storage in Huangcaoxia structure in the eastern Sichuan Basin,China[J]. Journal of Chengdu University of Technology(Science&Technology Edition), 2023, 50(5):551-559, 576.
[20]LI Z, WANG M, YU L, et al. Study of the basement structure load under the dynamic loading of heavy-haul railway tunnel[J].International Journal of Pavement Engineering, 2020, 21(11):1362-1373.
[21]宫丹妮,李景翠,万继方,等.多场作用下盐穴储气库腔体稳定性的数值模拟研究[J].石油科学通报,2023, 8(6):787-796.GONG D N, LI J C, WAN J F, et al. The numerical simulation of the stability of salt cavern gas storage considering multiple fields[J]. Petroleum Science Bulletin, 2023, 8(6):787-796.
[22]王者超,贾文杰,冯夏庭,等.隧洞式内衬储气库极限储存压力解析解[J].力学学报,2023, 55(3):710-718.WANG Z C, JIA W J, FENG X T, et al. Analytical solution of limit storage pressures for tunnel type lined gas storage Caverns[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3):710-718.
[23]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006, 28(4):89-94.LIANG B, LUO H, SUN C X. Simulated study on vibration load of high speed railway[J]. Journal of the China Railway Society, 2006, 28(4):89-94.
[24]卞艳山.地面汽车荷载影响下邻近建筑物的振动响应规律研究[D].邯郸:河北工程大学,2017.BIAN Y S. The Response of Adjacent Buildings under the Vibration by Vehicle Load[D]. Handan:Hebei University of Engineering, 2017.
[25]姜德义,彭辉华,赵丽君,等.熵权集对分析法在盐岩储气库稳定性评价中的应用[J].东北大学学报(自然科学版),2017, 38(2):284-289.JIANG D Y, PENG H H, ZHAO L J, et al. Application of set pair analysis method based on entropy weight to the stability evaluation of salt rock gas storage[J]. Journal of Northeastern University(Natural Science Edition), 2017, 38(2):284-289.
[26]骆正山,宁清云,骆济豪.盐岩储气库稳定性评估模型与应用研究[J].智能计算机与应用,2024, 14(1):43-48,55.LUO Z S, NING Q Y, LUO J H. Stability assessment of gas storage reservoirs based on integrated assignment-efficacy factor[J]. Intelligent Computer and Applications, 2024, 14(1):43-48, 55.
[27]张强勇,王保群,向文.盐岩地下储气库风险评价层次分析模型及应用[J].岩土力学,2014, 35(8):2299-2306.ZHANG Q Y, WANG B Q, XIANG W. Hierarchical analytical model of risk evaluation for underground salt rock gas storage and its application[J]. Rock and Soil Mechanics,2014, 35(8):2299-2306.
基本信息:
DOI:10.13578/j.cnki.issn.1671-1556.20250062
中图分类号:TE972;U456.3
引用信息:
[1]雷宝泽,王时林,苏培东等.隧道交通荷载对储气库盖层完整性的影响[J].安全与环境工程,2025,32(04):57-69.DOI:10.13578/j.cnki.issn.1671-1556.20250062.
基金信息:
重庆天然气储运有限公司科研项目(XNS重庆储运JS2024-03)