235 | 0 | 60 |
下载次数 | 被引频次 | 阅读次数 |
针对风力发电机组频发的火灾事故,首先从人-机-环-管角度出发,通过统计分析近20年来全球81起风力发电机组火灾事故案例,得到了21项风力发电机组火灾事故的影响因素;然后通过事故树分析(fault tree analysis,FTA)法演绎推理得到了风力发电机组火灾事故各基本事件的逻辑关系,并根据结构重要度进行了火灾事故致因的定性分析;接着采用模糊层次分析(fuzzy analytic hierarchy process,FAHP)法,将事故树的基本事件从人、机、环、管4个方面整合,构建出风力发电机组火灾事故致因评价指标体系,并以结构重要度系数的顺序为模糊判断矩阵的赋值依据,进行了火灾事故致因的定量分析;最后,根据综合分析结果提出了风力发电机组火灾事故的对策措施。结果表明:机和环境的不安全因素是引发火灾事故的主要致因;电气设备故障和雷击是最主要因素。该研究成果可为风力发电机组的火灾防治提供理论参考。
Abstract:In response to the frequent occurrence of wind turbine fire accidents, this study first analyzed 81 global wind turbine fire incident cases from the past two decades through a statistical approach based on the human-machine-environment-management( HMEM) framework. This analysis identified 22 influencing factors of wind turbine fires. Subsequently, through deductive reasoning using fault tree analysis(FTA),the logical relationships among basic events leading to wind turbine fires were established, with qualitative cause analysis conducted via structural importance degree. The basic events from the FTA were then categorized into four dimensions,i. e. human, machine, environment and management,to construct a causal evaluation index system for wind turbine fires. Using the structural importance coefficient order as the basis for assigning values in the fuzzy matrix, a judgment matrix was developed via the fuzzy analytic hierarchy process(FAHP) to perform quantitative cause analysis. Finally, targeted countermeasures for wind turbine fire prevention were proposed based on comprehensive analysis. The results indicate that unsafe factors in machine and the environment serve as the primary causes of fire accidents, with electrical equipment failures and lightning strikes identified as the most critical contributing factors. This research provides a theoretical foundation for fire prevention and control in wind turbines.
[1]焦宇,陈冉,陈晓晓,等.通风工况下风力发电机舱火灾场景特性模拟[J].安全与环境工程,2022, 29(4):255-264, 272.JIAO Y, CHEN R, CHEN X X, et al. Simulation on fire field characteristics of the wind turbine cabin under ventilation conditions[J]. Safety and Environmental Engineering, 2022,29(4):255-264, 272.
[2] ERTEK G, KAILAS L. Analyzing a decade of wind turbine accident news with topic modeling[J]. Sustainability, 2021, 13(22):12757.
[3] YOU F, SHAIK S, ROKONUZZAMAN M, et al. Fire risk assessments and fire protection measures for wind turbines:A review[J]. Heliyon, 2023, 9(9):e19664.
[4] LIN Y, TU L, LIU H, et al. Fault analysis of wind turbines in China[J]. Renewable and Sustainable Energy Reviews, 2016,55:482-490.
[5] MOU J, JIA X, CHEN P, et al. Research on operation safety of offshore wind farms[J]. Journal of Marine Science and Engineering, 2021, 9(8):881.
[6]徐明超.风电火灾原因及防火对策[J].消防科学与技术,2011, 30(11):1073-1075.XU M C. The causes and countermeasures of wind power generation fire[J]. Fire Science and Technology, 2011, 30(11):1073-1075.
[7]邢辉,刘勤安,郑庆功,等.海上风电机组电气火灾风险分析及其防护[J].可再生能源,2013, 31(6):109-113.XING H, LIU Q A, ZHENG Q G, et al. Study on risk analysis and protection of electrical fire for offshore wind turbines[J]. Renewable Energy Resources, 2013, 31(6):109-113.
[8]吴华珠,唐宝莲.风电机组失火原因及解决方案[J].水利水电技术,2011, 42(2):86-89.WU H Z, TANG B L. Causation of fire accident on windpower generating unit and its solution[J]. Water Resources and Hydropower Engineering, 2011, 42(2):86-89.
[9]付净,聂方超,刘虹,等.基于FTA-24Model的化工事故原因分析[J].安全与环境工程,2019, 26(6):159-165.FU J, NIE F C, LIU H, et al. Cause analysis of chemical accidents based on FTA-24Model[J]. Safety and Environmental Engineering, 2019, 26(6):159-165.
[10]AHN Y J, YU Y U, KIM J K. Accident cause factor of fires and explosions in tankers using fault tree analysis[J]. Journal of Marine Science and Engineering, 2021, 9(8):844.
[11]ALI K, RANA Z, NIAZ A, et al. Fault tree analysis for reliability analysis of wind turbines considering the imperfect repair effect[J]. European Journal of Theoretical and Applied Sciences, 2023, 1(4):682-691.
[12]兰圣涛,周宏,曾圆梦,等.基于模糊综合评判法的岩溶地区地层含水性评价——以三峡地区寒武系地层为例[J].安全与环境工程,2021, 28(2):133-141.LAN S T, ZHOU H, ZENG Y M, et al. Evaluation of stratigraphic aquosity in karst area based on fuzzy comprehensive evaluation method—A case study in Cambrian strata in the Three Gorges area[J]. Safety and Environmental Engineering,2021, 28(2):133-141.
[13]蔡少广,任少云,汤智新,等.基于FTA和FAHP耦合的可燃性粉尘爆炸风险分析[J].安全,2023, 44(2):37-42.CAI S G, REN S Y, TANG Z X, et al. Combustible dust explosion risk analysis based on FTA and FAHP[J]. Safety&Security, 2023, 44(2):37-42.
[14]张霞,朱杰.基于事故树和模糊层次分析法的飞机火灾事故分析[J].安全,2020, 41(4):39-43.ZHANG X, ZHU J. Analysis on fire accident of airplane based on fault tree and fuzzy analytical hierarchy process[J]. Safety&Security, 2020, 41(4):39-43.
[15]SUN W, LIN W C, YOU F, et al. Prevention of green energy loss:Estimation of fire hazard potential in wind turbines[J].Renewable Energy, 2019, 140:62-69.
[16]BROUWER S R, AL-JIBOURI S H S, CáRDENAS I C, et al. Towards analysing risks to public safety from wind turbines[J]. Reliability Engineering&System Safety, 2018, 180:77-87.
[17]赵丹,何中其,胡毅亭.基于事故树对炸药压装工艺爆炸事故的成因分析[J].安全与环境工程,2018, 25(4):130-133.ZHAO D, HE Z Q, HU Y T. Causation analysis of explosion accidents in explosive pressing process based on fault tree analysis[J]. Safety and Environmental Engineering, 2018, 25(4):130-133.
[18]李海丽,陈勇,张文龙,等.矿山顶板事故的FTA-FuzzyVensim分析方法探究[J].安全与环境工程,2019, 26(4):147-151, 160.LI H L, CHEN Y, ZHANG W L, et al. Research on FTAFuzzy-Vensim analysis method based on roof accidents in mine[J]. Safety and Environmental Engineering, 2019, 26(4):147-151, 160.
[19]黄卫清,徐平如,钱宇.基于事故树方法的城市灰霾的致因机理分析:以天津市为例[J].化工学报,2018, 69(3):982-991, 1252.HUANG W Q, XU P R, QIAN Y. Causation mechanism analysis of urban haze based on FTA method:Taking Tianjin as a case study[J]. CIESC Journal, 2018, 69(3):982-991,1252.
[20]黄沛丰,刘家亮,金翼,等.基于火三角模型的锂离子电池火灾事故树分析[J].安全与环境学报,2018, 18(1):66-69.HUANG P F, LIU J L, JIN Y, et al. Fault tree analysis method for lithium ion battery failure mode based on the fire triangle model[J]. Journal of Safety and Environment, 2018,18(1):66-69.
[21]张靖雯,马晓雪,刘阳,等.基于FRAM-FAHP法的船舶碰撞事故致因分析[J].安全与环境工程,2021, 28(1):29-35.ZHANG J W, MA X X, LIU Y, et al. Causation analysis of ship collision accidents based on FRAM-FAHP method[J].Safety and Environmental Engineering, 2021, 28(1):29-35.
[22]张志雄,叶雪云,殷志强,等.基于FAHP法的连续多跨渡槽拆除爆破安全评价[J].中国安全科学学报,2020, 30(11):67-74.ZHANG Z X, YE X Y, YIN Z Q, et al. Safety evaluation of continuous multi-span aqueduct’s demolition blasting based on FAHP method[J]. China Safety Science Journal, 2020, 30(11):67-74.
[23]陈伟炯,吴宇凡,李新,等.一种基于人-机-环境-管理系统理论的安全文化评价方法[J].安全与环境学报,2022, 22(5):2649-2659.CHEN W J, WU Y F, LI X, et al. A safety culture evaluation method based on the man-machine-environment-management system theory[J]. Journal of Safety and Environment, 2022,22(5):2649-2659.
[24]康与涛,赵茹娟,陈伟炯,等.海工企业安全文化MMEM-SV评价模型的构建及实证研究[J].安全与环境工程,2023, 30(3):21-27.KANG Y T, ZHAO R J, CHEN W J, et al. Construction and empirical study of MMEM-SV assessment model of safety culture in marine engineering enterprises[J]. Safety and Environmental Engineering, 2023, 30(3):21-27.
基本信息:
DOI:10.13578/j.cnki.issn.1671-1556.20240213
中图分类号:X928.7;TM315
引用信息:
[1]梅志恒,陆凯华,商溪林.基于FTA-FAHP的风力发电机组火灾事故致因分析[J].安全与环境工程,2025,32(04):78-85.DOI:10.13578/j.cnki.issn.1671-1556.20240213.
基金信息:
国家自然科学基金面上项目(52376133)